

Fig. 3. Projection along the chain axis of the paraffinic part of (n $\left.\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NH}_{3}\right)_{2} \mathrm{ZnCl}_{4}, a^{\prime}=7 \cdot 20 \AA . T$ and R refer to triclinic and orthorhombic contacts according to the nomenclature of Kitaigorodsky.

As shown in Fig. 1, the structure of (n $\left.\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NH}_{3}\right)_{2} \mathrm{ZnCl}_{4}$ consists of ionic layers sandwiched between layers of paraffinic chains. Unlike (n $\left.\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NH}_{3}\right)_{2} \mathrm{MnCl}_{4}$, the ionic layers are comprised of single tetrahedral ZnCl_{4}^{2-} anions in a nearly hexagonal planar array, each ZnCl_{4}^{2-} anion being surrounded by six NH_{3}^{+}groups. A model of this kind of array is shown in Fig. 2, where all the $\mathrm{N}-\mathrm{Cl}$ distances shorter than $5 \AA$ are reported.

The $\mathrm{Zn}-\mathrm{Cl}$ distances are all equal within $0.02 \AA$ and the distortions of the bond angles are less than 5° with respect to the tetrahedral value.

The paraffinic chains have a nearly planar zigzag conformation; the slight distortions of the internal rotation angles from 180° may be due to the need to achieve a closest packing arrangement of the chains in the spatial regions far from the ions. In these regions alternation of T and R [nomenclature of Kitaigorodsky (1961)] types of side-by-side packing of paraffinic chains is realized, as can be seen in Fig. 3, giving rise locally to a packing density very near that of polyethylene.

References

Clajolo, M. R., Corradini, P. \& Pavone, V. (1976). Gazz. Chim. Ital. In the press.
Cruickshank, K. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. \& Truter, M. R. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Oxford: Pergamon Press.
Kitaigorodsky, A. I. (1961). Organic Chemical Crystallography, pp. 177-208. New York: Consultants Bureau.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Landi, E. \& Vacatello, M. (1975). Thermochim. Acta, 12, 141-146; 13, 441-447.
Moore, F. H. (1963). Acta Cryst. 16, 1169-1175.

Acta Cryst. (1977). B33, 555-557

Intermetallic Compounds: Antimony-Beryllium SbBe 13

By A. Haase and M. Martínez-Ripoll
Chemisches Laboratorium der Universität Freiburg (Breisgau), Albertstrasse 21, Germany (BRD)

(Received 3 August 1976; accepted 23 September 1976)

Abstract

SbBe}_{13}\), F.W. 238.88 space group Fm 3 c ; $a=10.046$ (3) A,$\quad Z=8 ; \quad D_{c}=3.13 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad U=$ $1013.9 \AA^{3} ; \mu($ Mo $K \alpha)=53.1 \mathrm{~cm}^{-1} ; F(000)=688$. This structure was solved by the Patterson method and refined by least-squares analysis to an R of 0.043 , including 105 reciprocal points. SbBe_{13} has the $\mathrm{NaZn}_{13^{-}}$ type structure.

Introduction. This work is part of a structural study of the intermetallic compounds formed by alkaline-earth metals with the Group Va elements.

It is well known that Mg reacts with the elements of the Va main group giving rise to salt-like structures of the type $\mathrm{Mg}_{3} X_{2}$, where $X=\mathbf{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$ (Stackelberg \& Paulus, 1933; Zintl \& Husemann,

1933; Martinez-Ripoll, Haase \& Brauer, 1974), although von Schnering \& Menge (1976) reported a compound with the formula MgP_{4}.

The heavy alkaline-earth metals form compounds which deviate from the above-mentioned salt-like stoichiometry [$M X, M_{11} X_{10}, M_{5} X_{3}, M_{2} X$, where $M=$ $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ (Iandelli \& Franceschi, 1973; Deller \& Eisenmann, 1976; Eisenmann \& Deller, 1975)], showing their similarity to the divalent lanthanide and actinide elements (Iandelli \& Franceschi, 1973; Yoshihara, Taylor, Calvert \& Despault, 1975).

The same salt-like formulae as for Mg have been found for several compounds between Be and the Group $V a$ elements: $\mathrm{Be}_{3} \mathrm{~N}_{2}, \mathrm{Be}_{3} \mathrm{P}_{2}$ (Stackelberg \& Paulus, 1933) and $\mathrm{Be}_{3} \mathrm{As}_{2}$ (Weibke, 1930). Baird,

Geach, Knapton \& West (1958) observed no reaction between Be and Sb , but evaporation and electricalresistivity measurements made by Ugai, Gordin \& Anokhin (1964) indicate the existence of a compound with the formula $\mathrm{Be}_{3} \mathrm{Sb}_{2}$. Our study was undertaken to clarify, by means of X-ray diffraction techniques, the existence of compounds in the $\mathrm{Be}-\mathrm{Sb}$ system.

A mixture of composition $2 \mathrm{Be}+1 \mathrm{Sb}$ in a BeO crucible was placed in an Fe crucible which was closed under Ar. The melt was cooled in two steps, from 1280 to $600^{\circ} \mathrm{C}$ in 4 h and to room temperature in 14 h .

Single crystals with a metallic appearance were directly isolated from the melt by mechanical fragmentation; three different crystal species were found. Two have cubic symmetry with an F-centred lattice [$a=6.22$ (1) and 5.91 (1) \AA respectivelyl. A structure determination on the two above-mentioned crystal species was not undertaken because of the poor quality of their single-crystal diffraction patterns. We report here the crystal structure of the third kind of crystal, whose formula was confirmed by this study to be SbBe_{13}.

Crystal data for SbBe_{13} are shown above. Since only a few small single crystals were available, their density could not be exactly measured and only an approximate value ($3.0 \pm 0.1 \mathrm{~g} \mathrm{~cm}^{-3}$) was determined. A platelike single crystal of dimensions $0.16 \times 0.11 \times 0.03$ mm was mounted on a Nonius CAD-4 diffractometer. The intensities of 121 independent reflexions were collected in the range $4^{\circ}<\theta<37^{\circ}$ with Mo $K \alpha$ radiation and the $\omega / 2 \theta$ scan mode. Of these, 105 were considered 'observed' according to the criterion $I>2 \sigma(I)$ and used in the refinement step. Absorption corrections were made with ORABS (written by D. Schwarzenbach). Scattering factors for neutral atoms and the anomalous dispersion corrections for Sb were taken from International Tables for X-ray Crystallography (1974). A Wilson plot gave the approximate values for the scale and overall temperature factor ($0.90 \AA^{2}$). The distribution of maxima in the Patterson function led to the atomic distribution described for the structure of NaZn_{13} (Shoemaker, Marsh, Ewing \& Pauling, 1952).

A good weighting scheme for the refinement was found to be $w=w_{1} w_{2}$, where $w_{1}=1 / \sigma_{1}^{2}$ and $w_{2}=1 / \sigma_{2}^{2}$ with $\sigma_{1}=a+b\left|F_{0}\right|$ and $\sigma_{2}^{2}=c+d \sin \theta / \lambda$; the coefficients a, b, c, d, given in Table 1, were calculated by PESOS (Martinez-Ripoll \& Cano, 1975). The refinement was carried out in different steps because of the high correlations among the variables. The following parameters were independently varied: the scale factor; the Sb temperature factor, for reflexions with $\sin \theta / \lambda>$ 0.6 ; the extinction coefficient as an isotropic correction (Larson, 1967); the positional and thermal parameters of $\mathrm{Be}(2)$ for only those reflexions with odd indices; and the temperature factor for $\mathrm{Be}(1)$ and positional and thermal parameters for $\mathrm{Be}(2)$.

Table 1. Coefficients for the weighting scheme

	a	b
$0<F_{o} \leq 60$	2.98	-0.01
$60<F_{o} \leq 165$	1.18	0.02
$165<F_{o} \leq 300$	5.32	-0.01
	c	d
	c	d
$0<\sin \theta / \lambda \leq 0.63$	5.23	-8.03
$0.63<\sin \theta / \lambda \leq 0.90$	-2.61	4.41

Table 2. Atomic parameters for SbBe_{13}
Standard deviations are given in parentheses. The isotropic extinction coefficient $=2.1(1) \times 10^{-3}$.

	x	y	z	$B\left(\AA^{2}\right)$
Sb	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$0 \cdot 84(1)$
$\mathrm{Be}(1)$	0	0	0	$0 \cdot 1(2)$
$\operatorname{Be}(2)$	0	$0 \cdot 1781(5)$	$0 \cdot 1157(5)$	$0 \cdot 22(6)$

The above-mentioned refinement scheme was repeated once and led to the atomic parameters given in Table 2. The unweighted and weighted disagreement indices are $R=0.043$ and $R_{w}=0.050$, where $R_{w}=$ $\left(\Sigma w \Delta^{2} / \Sigma w\left|F_{o}\right|^{2}\right)^{1 / 2} . *$

Discussion. The existence of the intermetallic compounds of the series $A B_{13}$ has already been reported (Ketelaar, 1937; Zintl \& Hauke, 1937, 1938; Shoemaker, Marsh, Ewing \& Pauling, 1952). Be reacts with many metals of the Groups II $a, \operatorname{IV} b$ and III b (including the lanthanides and actinides) to form compounds corresponding to the formula $A \mathrm{Be}_{13}$, where $A=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Sc}, \mathrm{Y}, \mathrm{La}, \mathrm{Ln}, \mathrm{An}, \mathrm{Zr}, \mathrm{Hf}(\mathrm{Ln}=$ lanthanides, $\mathrm{An}=$ actinides). This structure type occurs between elements with metallic-radii ratios $\left(r_{\mathrm{Be}} / r_{A}\right)$ ranging from $0.523\left(\mathrm{SrBe}_{13}\right)$ to $0.741\left(\mathrm{UBe}_{13}\right)$. Also the compounds ($\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) Zn_{13} and (K, Rb, $\mathrm{Cs}) \mathrm{Cd}_{13}$ present metallic-radii ratios within the range mentioned above [references for these and for the $A \mathrm{Be}_{13}$ compounds are to be found in Benedict, Buijs, Dufour \& Toussaint (1975) and Landolt-Börnstein (1971)].

The first example of an $A \mathrm{Be}_{13}$ structure involving a Group $\mathrm{V} a$ element is the present compound SbBe_{13}, with a radii ratio of 0.706 . If the radii ratio is a factor

[^0]determinant of this structure type, one could also expect the existence of the compound BiBe_{13} (radii ratio $=0.661$).

In Fig. 1 are plotted the positional parameters y and z for SbBe_{13} together with those for $\mathrm{NaZn} \mathrm{n}_{13}$ (Shoemaker, Marsh, Ewing \& Pauling, 1952), MgBe_{13} and CaBe_{13} (Baker, 1962). It is seen that the parameter values obtained for all these structures differ considerably from the values required either by a regular icosahedron or by a regular snub cube.

The bond distances in SbBe_{13} are reported in Table 3. The shortest $\operatorname{Be}(2)-\operatorname{Be}(2)$ distances of $2 \cdot 133 \AA$ are shorter than the values of 2.225 and $2.286 \AA$ for Be. Similar discrepancies were found in the structures of MgBe_{13} and CaBe_{13} (Baker, 1962), where the shortest $\mathrm{Be}(2)-\mathrm{Be}(2)$ distances are $2 \cdot 158$ and $2 \cdot 161 \AA$ respectively. SbBe_{13} presents a 'volume contraction' of $\sim 6 \%$ when the volume per formula unit of the compound is compared with the volume of the component metals

Fig. 1. Positional parameters z versus y. The radii of the circles represent the standard deviations for the determinations concerned.

Table 3. Bond lengths in SbBe_{13} Estimated standard deviations are given in parentheses.

		$d(\AA)$	Number of bonds
Bonds involving $\operatorname{Be}(1)(0,0,0)$			
$\mathrm{Be}(2)$	($0, y, z$)	2.133 (5)	12
Bonds involving $\operatorname{Be}(2)(0, y, z)$			
$\mathrm{Be}(1)$	$(0,0,0)$	2.133(5)	1
$\mathrm{Be}(2)$	($0, z, \frac{1}{2}-y$)	2.165 (7)	2
$\mathrm{Be}(2)$	$\left(z, \frac{1}{2}-y, 0\right)$	2.188(6)	2
$\mathrm{Be}(2)$	($z, 0, y$)	2.224 (5)	4
$\mathrm{Be}(2)$	($0, y,-z$)	2.324 (7)	1
Sb	($\left(\frac{1}{4}, \frac{1}{4} \frac{1}{4}\right)$	2.941 (3)	2
Bonds involving $\mathrm{Sb}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$			
$\mathrm{Be}(2)$	($0, y, z$)	2.941 (3)	24

computed in the correct stoichiometry. This can be due to an electron transfer (Pauling, 1950).

All calculations were made with the X-RAY 70 system (Stewart, Kundell \& Baldwin, 1970) running on the Univac 1106 computer of the University of Freiburg, Germany.

We are indebted to Professor G. Brauer for his sponsorship and for the facilities placed at our disposal. We also thank Dr W. Littke for collecting the intensity data and Mrs B. Geiselmann for her assistance. We gratefully acknowledge the financial support given to one of us (MM-R) by the Alexander von HumboldtStiftung.

References

Baird, J. D., Geach, G. A., Knapton, A. G. \& West, K. B. C. (1958). Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, Geneva, paper 24.
Baker, T. W. (1962). Acta Cryst. 15, 175-179.
Benedict, U., Buijs, K., Dufour, C. \& Toussaint, J. C. (1975). J. Less-Common Met. 42, 345-354.

Deller, K. \& Eisenmann, B. (1976). Z. Naturforsch. 31b, 29-34.
Eisenmann, B. \& Deller, K. (1975). Z. Naturforsch. 30b, 66-72.
Iandelli, A. \& Franceschi, E. (1973). J. LessCommon Met. 30, 211-216.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press.
Ketelaar, J. A. A. (1937). J. Chem. Phys. 5, 668.
Landolt-Börnstein (1971). Numerical Data and Functional Relationships in Science and Technology. New Series. Vol. 6. Berlin: Springer Verlag.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Martínez-Ripoll, M. \& Cano, F. H. (1975). PESOS. Instituto Rocasolano CSIC, Serrano 119, Madrid 6, Spain.
Martínez-Ripoll, M., Haase, A. \& Brauer, G. (1974). Acta Cryst. B30, 2006-2007.
Pauling, L. (1950). Proc. Natl. Acad. Sci. US, 36, 533-538.
Schnering, H. G. von \& Menge, G. (1976). Z. anorg. allgem. Chem. 422, 219-225.
Shoemaker, D. P., Marsh, A. E., Ewing, F. J. \& Pauling, L. (1952). Acta Cryst. 5, 637-644.

Stackelberg, M. \& Paulus, R. (1933). Z. phys. Chem. B22, 305-322.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Ugai, Ya. A., Gordin, V. L. \& Anokhin, V. Z. (1964). Zh. Neorg. Khim.9, 218-220.
Weibke, F. (1930). Thesis, Hannover, Germany.
Yoshihara, K., Taylor, J. B., Calvert, L. D. \& Despault, J. G. (1975). J. Less-Common Met. 41, 329-337.
Zintl, E. \& Hauke, W. (1937). Nature, Lond. 25, 717-719.
Zintl, E. \& Hauke, W. (1938). Z. Elektrochem. 44, 104111.

Zintl, E. \& Husemann, E. (1933). Z. phys. Chem. B21, 138-155.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32139 (2 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH/ 1NZ, England.

